A Framework for Distributed Rover Control
and Three Sample Applications

Steve McGuire
Autonomy and Robotics Area
NASA Ames Research Center, MS 269-3
Moffett Field, CA, 94035-1000

Abstract

In order to develop quality control software for mul-
tiple robots, a common interface is required. By de-
veloping components in a modular fashion with well-
defined boundaries, roboticists can write code to pro-
gram a generic rover, and only require very simple
modifications to Tun on any robot with a properly im-
plemented framework. The proposed framework ad-
vances a GenericRover that could be any rover, from
Real World Interface’s All Terrain Robot Vehicle Jr.
series, to the Fido-class rovers from the Jet Propul-
ston Laboratory, to any other research robot. Using
these generic hardware interfaces, software designers
and engineers can concentrate on the actual code, and
not have to worry about hardware details. In addition
to the hardware support framework, 3 sample applica-
tions have been developed to demonstrate the flexibility
and extensibility of the framework.

1 Introduction

Every robotic rover architecture relies on some dis-
tributed mechanism to share rover data and to issue
commands. However, these independent architectures
are very hardware dependent and are not easily ex-
tensible to different rover platforms. The proposed
framework allows high-level software to be written to
support a reference rover. Through the use of well-
defined features and interfaces, high-level controllers
need not be concerned with hardware dependencies.
To support this framework, a foundation layer is re-
quired to transform high-level commands into the re-
quired hardware interface for the rover.

The proposed framework was designed to support
Real World Interface’s (RWI) All Terrain Robot Vehi-
cle (ATRV)-Jr. robot, but could be easily extended to
any control interface. Every detail of the rover is hier-
archically descended from a basic rover object. Follow-

ing previous work in the group, commands may be sent
to the physical hardware via standardized messages;
for convenience, the K9 rover messages were used as
templates. In the case of the ATRV-Jr., the hardware
framework is responsible for translating these high-
level messages into Common Object Request Broker
Architecture (CORBA) operations. CORBA is used
as an object transport by default; the commercially
supported control system aboard the ATRV-Jr. com-
municates via CORBA. By using asynchronous com-
mand queues to process rover requests, most frame-
work calls return to their calling function very quickly,
generally only requiring a memory copy.

Distributed operation is handled transparently by
the CORBA object transports, concurrently allowing
multiple disparate clients to issue requests to the rover
and observe the state. Much of the work of the base
class involves translating robot data to appropriately
standardized common output values. For example,
the CORBA components for the Inertial Measurement
Unit (IMU) provide one integration step of accelera-
tion data; the framework then interpolates the second
required integration to provide a rough estimate of
position.

2 Hardware Support
2.1 Hardware to CORBA Interface

Because of the modular design of CORBA, certain
components can be replaced with higher-performance
implementations. In the ATRV Jr., the only com-
ponents that are not driven by serial port are the
stereo framegrabbers, which connect via two Periph-
eral Component Interconnect (PCI) bus slots. These
framegrabbers are commercially available Hauppauge
WinTV NTSC cards that utilize a Brooktree 878
chipset. The original code provided by RWI used a
single-threaded, single buffering capture scheme which



did not allow the framegrabbers to function at their
optimal performance level. To speed up image cap-
ture, the hardware to CORBA software layer was
modified to use a framegrabber library [1] that pro-
vides multithreaded triple buffering.

The use of this library enabled a speed increase
in the performance of the vision subsystem. In ad-
dition, the original software layer wasted CPU time
in a compression step. Through experimentation, it
was determined that the compression was wasteful in
cases where the data will be used onboard or over a
hard link such as wired Ethernet. The original reason
to use compression was to enable image transmission
over the rover’s wireless Ethernet interface, which has
much less bandwidth than a wired connection. Since
image analysis will be used on-board, the compression
was removed.

2.2 Pseudo-Subcapture

A software modification was made to the vision
subsystem to enable cropping of captured images be-
fore transmission through the CORBA interface. This
modification was important to speeding up image op-
erations; by transmitting less data across layers, more
CPU time can be devoted to analysis. The time re-
quired to transmit a control request is much less than
that required to transmit a complete image.

Some framegrabber cards support this operation in
hardware; however, the ATRV Jr.’s do not. There-
fore, a software cropping solution was implemented,
by which the return data buffer was filled by carefully
iterating through the full-size image buffer to crop out
the specified image size. The subimage is specified by
using a top and left coordinate pair in conjunction
with an x-length and a y-length coordinate pair.

The operation to crop an image before transmission
is only slightly less computationally efficient due to the
need to perform multiplication to locate indices in the
source image buffer, but the reduction in transmission
speed is of such great benefit so as to justify the added
computation.

3 Base Calibration
3.1 Introduction

As an extension of the CORBA objects, the frame-
work provides the ideal layer to apply correction fac-
tors to systematic rover errors and to approximate
non-systematic errors. For example, using the UMB-
Mark benchmarking tests[2], the error in the drive-

train’s positional estimate can be reduced. However,
the ATRV-Jr. is a skid steer robot, similar to a tracked
vehicle, and depends on slipping tires to turn. There-
fore, there is some undetermined error when a turn is
executed that depends on the surface conditions and
the requested rate of turn. So, for every surface that
the robot may operate on, a new model must be de-
veloped for the rover’s drivetrain.

In the course of field tests, traverse data has been
collected that will allow a calibration to be approxi-
mated for the ATRV-Jr. When on an ablative surface
such as gravel, the skid steer of the robot disturbs the
surface. Due to the change in surface conditions, two
turns of the same velocity and the same duration do
not produce the same change in robot heading.

In Figure 1, the two circles are supposed to be co-
incident turns of the rover after a previous turn and
traverse. Figure 1 is a prime example of the difficulty
in calibrating a skid-steer robot. The effectiveness of
the steering action is directly affected by the stability
of the underlying terrain. Possible solutions include

Figure 1: Error in Turning Movement

the use of absolute positioning sensors such as the on-
board electronic compass and relative sensors such as
the IMU; the update speed of the compass and the in-
accuracy of the IMU generally preclude their direct use



as controls on rotation and translation. The results of
[5] may be useful to integrate into the base controller,
as the sensors available on K9 are very similar to the
sensors of the ATRV-Jr.

3.2 Resolution

The calibration setup was needed to correct for a
problem that was only observed in field tests that re-
lated to the difference between a turn command and
the actual result of the command. These commands
were given by hand and thus were directly observable;
the same class of commands is used by the sample
tracker described below and thus need to become more
accurate. The model of the base drivetrain that is ex-
posed by RWT’s software does not expose raw wheel
counts, and appeared calibrated for non-ablative sur-
faces such as solid floors. On such surfaces, turns are
much more accurate than for turns on gravel.

A basic calibration is proposed to determine linear
coeflicients of the rotational and translational veloci-
ties to characterize a surface’s requirements for accu-
rate motion. Also, because the work of [5] is available
for integration into the base controller, a combination
approach might give the best results.

4 Sample Applications: Utilities
4.1 grover: A Rover Control Utility

grover was designed to exercise all of the possible
functions of all of the rover extensibilities. The com-
mand line interface is suited to directing the robot
through a series of low-level operations. In essence,
the purpose of this application is a test and utility
driver that can issue specific commands for adjusting
the rover’s state. For example, this utility was used
in the proving tests to issue specific drive commands
and to adjust the pantilt head to specific values. Also,
grover was used to capture imagery used by E. Ban-
dari and E. Ricks of the Autonomy and Robotics Area
(ARA) to characterize the vision system aboard the
rover.

4.2 panovision: A Telemetry and Imag-
ing Utility

To demonstrate the flexibility of the framework,
and to support other researchers in the Autonomy and
Robotics Area, panovision was implemented. A com-
mercially available camera was placed into an optics
package manufactured by Carnegie Mellon University

Figure 2: CMU Omnicam aboard ATRV-Jr.

(CMU) to provide a full 360 degree field of view. The
complete enclosure was then mounted on the ATRV-Jr
using a custom manufactured mount. (Figure 2)

The chosen camera is a Sony EVI-370D block cam-
era that has a serial interface to adjust camera param-
eters and a NTSC video output. By reviewing tech-
nical material provided by Sony and modifying source
code provided by CMU[4], a library of camera con-
trol functions was developed. Some functions include
adjustable zoom, focus control, and exposure control.

4.2.1 Telemetry Control

To facilitate other research, rover telemetry had to
be captured by interrogating various hardware com-
ponents within a frame of reference. This hardware
requirement was accomplished by using the developed
framework. In addition, assuming a proper implemen-
tation was available for another rover, only superficial
modifications would be necessary to run the image
capture and telemetry capture on another platform.



4.2.2 Rate of Capture

panovision was written with the express desire to cap-
ture rover telemetry at a rate sufficient to reconstruct
rover operations offline. Because of the finite processor
capability available onboard, image requests arrived
in a command queue faster than the requests could
be serviced; the result was that multiple telemetry
records would be available between images. For the
purposes of the other researchers in ARA, this many-
to-one relationship would not be a hindrance.

5 Sample Applications: Visual Servo-
ing

As a realistic test of the process of modifying an
existing application to support the proposed frame-
work, the tracker developed by [3] was ported to run
on the ATRV-Jr. This tracker uses an in-house image
class that provides many common operations such as
reading, writing, and basic transformations. Generic
code was available that encapsulated an image acquire
operation via a custom method for each framegrab-
ber that was to be supported. This method allows
for hardware flexibility; for example, to test analysis
code, the acquire might simply load an image from
secondary storage.

In the operations described in [3Jusing the Mar-
sokhod rover, a custom method was used to transfer
an image from the hardware framegrabber buffer to a
common image class. In order for the proposed frame-
work to support this kind of synchronous operation,
a support layer was added to translate the CORBA-
compatible image transport into the logical memory
layout required by the common image class.

5.1 Tracking Algorithm

The tracker uses the sign of the difference of Gaus-
sian (DOG) operator in an attempt to uniquely char-
acterize the desired target. Using a binary match-
ing algorithm, the tracker correlates the chosen target
with all possible points in the search space, assign-
ing each possible point a score that is based on the
number of matches between the chosen target and the
DOG transformation of the source image. The tracker
then returns the point that most accurately matches
the chosen target and its associated score.

Because the target is characterized by a 32x32 win-
dow, a perfect score is one in which every pixel of
the window exactly matches every pixel of the source,
producing a numerical score of 1024. In actual testing,

due to subtle factors, a score of over 800 indicated an
appropriate match. By thresholding the best match,
we can determine when the tracker has lost the target
for any reason.

5.2 Template Updating

5.2.1 Appearance Correction

As the rover approaches, the initial target will change
appearance; therefore, a mechanism is required to up-
date the template image. Using a source image, the
previous target and the best estimate of the current
target are combined using a weighted sum. In prac-
tice, because the target represented by this weighted
sum does not appear in any image, the tracker be-
came much more sensitive to appearance changes. To
make the weighted modification process work, the ker-
nel would require updating frequently so as to guaran-
tee an acceptable match. In contrast, when the kernel
requires an update, one can replace the kernel whole-
sale and remove previous influences. The downside of
such a replacement approach is that the target will
drift over iterations of the grab-track-move cycle. In
lab tests, the drift was most noticeable when track-
ing over relatively long distances; the drift appeared
proportional to the number of iterations required.

5.2.2 Terrain Correction

To adjust for rolling terrain, one could rotate either
the source image in the reverse direction, or rotate the
target in the same direction. Because the target kernel
is much smaller, the preferable solution is to roll the
kernel. However, when a rectangular image is rotated,
four black triangles will appear on the edges. Since
these triangles do not appear in the source image, a
false negative will be generated by the tracker, which
will have lost the target. A possible solution to this
problem would be to use the larger image that the
kernel was first created from as the rotation source.

This solution does not work well because the roll of
the rover is not about the optical axis of the camera.
The roll is about the center of the mass of the rover,
which is approximately 30 cm below the camera and
10 c¢m to the centerline of the rover. To accurately
project the sensed roll onto the camera image, a coor-
dinate transform would be necessary in addition to an
image rotation. However, the rotation would be about
an axis orthogonal to the image plane at a point that
is not in the image. Because of the increased compu-
tational complexity involved with roll correction, the
terrain is assumed to have negligible roll.



To adjust for pitching terrain, the onboard pitch
sensor is utilized. In the framework, a relative tilt is
defined to be the tilt angle of the pan-tilt head with
respect to the rover body; an apparent tilt is defined
to be the angle between the optical axis of the camera
and the surrounding terrain, using a planar assump-
tion. This apparent tilt can be calculated by summing
the reading from the pitch sensor and the tilt reading
from the pan-tilt head. By using the readings from
the pitch sensor, the rover can compensate for uneven
terrain and correct artificially high or low relative tilt
angles.

5.3 Finish Conditions

Once the tracker could analyze an image and report
on the best possible match of the target, the frame-
work was utilized to center the target in the field of
view and to issue a drive command to the base. In or-
der to determine when the rover has actually reached a
target, the measure of the apparent tilt angle defined
above is used. Presumably, when a target is within
range of an on-board instrument, the pan-tilt will be
”looking” downward beyond a specific, predefined an-
gle.

5.4 Role of Subcapture

Using the subcapture capability described above,
the performance of the tracking algorithm was in-
creased by limiting the search space. In every iter-
ation, the rover seeks to minimize the absolute pan
angle and keep the target centered in the image plane.
Once the rover has met these objectives, the possible
search space is limited to one quarter of the size of the
initial space to increase tracking performance.

Due to the distributed nature of the vision system,
a possible conflict exists where a request to change the
subimage may occur, but does not take effect instan-
taneously. The result of such a conflict is that the
returned imagery is from a different section of the im-
age than the specified coordinates requested. To pre-
vent this conflict, the vision object pauses the tracker
until the requested image coordinates are available.
The pause operation is transparent to the visual servo-
ing client and is provided by the particular framework
implementation. This operation is done at the low-
est possible level to reduce the communications band-
width required by imaging operations.

5.5 Disparity and Prediction Measure

Because the rover is moving with nearly constant
translational speed, a further enhancement of the
tracker would be to predict the location of the tar-
get in the next frame. By assuming a linear model of
movement, the target disparity, or the distance from
the target to the center point of the image, is mea-
sured and recorded. Using a simple approximation,
the next location of the target in the source image is
predicted. Due to insufficient resources, this informa-
tion is calculated and stored for further analysis, but
not integrated into the tracker control loop.

5.6 Tracker Performance

An operator selects a target using an initial im-
age at the full working resolution of the camera. The
tracker loop then drives the rover towards the target,
logging an image during every iteration. During full
resolution operation, the tracker loop can run at ap-
proximately 2 Hz. During subimage operation, the
loop speed increases to approximately 5 Hz.

5.6.1 Laboratory

In laboratory tests, the tracker’s performance is capa-
ble of driving the rover at speeds of up to 20 cm/s.
See Figures 3, 4, and 5 for starting, intermediate, and
ending points. The operator-designated target is sym-
bolized by a crosshair in 3; the rover’s estimates are
in 4 and 5. The performance of the tracker in the lab
setting is sufficiently good to warrant further investi-
gation; however, the laboratory setting makes use of
controlled lighting and a well-defined textured target,
the phone directory of the Center.

Figure 3: Lab Test Begin



Figure 4: Lab Test Intermediate

Figure 5: Lab Test Complete

5.6.2 Field

In field tests, the rover’s speed had to be reduced
to improve the tracker’s performance. Due to vary-
ing lighting as the rover approaches a target and the
unevenness of the terrain, the tracker frequently was
unable to follow a target during the entire traverse.
See Figures 6, 7, and 8 for starting, intermediate, and
ending points. Once again, the operator-designated
target is denoted by a crosshair in Figure 6, and the
rover’s estimates are in Figures 7 and 8 Note that this
traverse was the only complete traverse during field
testing; other attempts failed due to factors such as
appearance change and terrain condition. In Figure
8, note that the crosshair is not over the initially se-
lected target. This disparity is due to drift in the
appearance correction code.

The drift is amplified during every appearance
change, and so a longer traverse will produce more

drift. Eventually, the drift would have knocked the
template completely off of the target; the next result-
ing correlation attempt would produce an element of
the surrounding terrain as a result. These shortcom-
ings point to a need to implement a more robust track-
ing algorithm; the control code of the ATRV-Jr. did
not produce a failure point.

Figure 6: Field Test Begin

Figure 7: Field Test Intermediate

6 Summary and Conclusions

The ATRV-Jr. is envisioned to be an appropriate
prototype for other inflatable-wheeled rovers; the top
speed of the ATRV-Jr. is 1.5 m/s, compared to the
speed of solid-wheel rovers such as the Jet Propulsion
Laboratory Fido-class that have maximum safe speeds
of 10 cm/s. The developed framework provides for



Figure 8: Field Test Complete

an extensible control and reporting interface for any
type of rover that has the same logical functions. For
example, most rovers have capabilities such as moving
a pan-tilt head, moving the drivetrain and chassis, and
retrieving current rover state.

Any software which needs to have access to rover
control need only host a framework object, allow-
ing user interface development to become indepen-
dent from object transport development. Essentially,
the framework establishes a local set of objects that
proxy requests to the rover, hiding the underlying ob-
ject transport from the developer. Through the use of
such abstractions, any rover could be supported in a
transparent fashion.

In addition, by using CORBA over Transmission
Control Protocol/Internet Protocol (TCP/IP) as a
distributed object transport, any operation can be ini-
tiated by any machine that has IP connectivity to the
rover. As a side benefit, several CORBA implementa-
tions are freely available, negating the direct or hidden
licensing costs associated with other distributed object
models.

Many further developments are envisioned. For ex-
ample, a generic simulation rover that conforms to the
framework and provides mockup data and telemetry
would be useful for testing rover control software of-
fline, in a device independent fashion. Control soft-
ware under development can support any rover that
has basic functions; components that require special-
ized control such as arm control or other device control
can simply extend the framework in the appropriate
direction for the appropriate hardware platform. In
this case, only rover-specific code would need to be
written; core functionality would be provided by the
framework and the framework’s underlying hardware

implementation.
Acknowledgments

Many thanks to M. Bualat, R. Washington, M.
Deans, A. Wright. L. Edwards, K. Bass, M. Fair, E.
Ricks, E. Bandari, and the other members of the Au-
tonomy and Robotics Area of Code IC for supporting
this work.

References

[1] A. Schiffler, aschiffler@home.com “libbgrab”
http://www.ferzkopp.net /Software/libbgrab/

[2] J. Borenstein, L. Feng, "UMBMark - A Method
for Measuring, Comparing, and Correcting Dead-
reckoning Errors in Mobile Robots”, UM-MEAM-
94-22, University of Michigan 1994

[3] D. Wettergreen, H. Thomas, M. Bualat, ”Initial
Results from Vision Based Control of the Ames
Marsokhod Rover”, Proceedings IROS ’97, pp.
1377-1382.

[4] J. McMabhill, jmem@fre.ri.cmu.edu ” VISCA Cam-
era Interface”, Robotics Institute, Carnegie Mellon
University, 1999.

[5] R. Xu, rxu@andrew.cmu.edu ”State Estimation
On K97, NASA Ames Research Center, 2001.



